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Abstract—The anisotropic thermomechanical constitutive theory for a fluid-filled porous material
with a solid/fluid outer boundary is constructed along the same lines as in the author’s previous
work. The notion that a representative volume element may be considered as a superposition of the
porous solid material and the porous fluid material is employed. The constitutive theory with a
uniform temperature increase is constructed by use of superposition. The thermal effective stress
laws for various kinematical quantities are obtained.

I. INTRODUCTION

References [1-3] constructed the constitutive theory of a fluid-filled porous material from
a slightly different point of view from that of Biot[4-6] and gave a further insight into the
well-known theory. Most recently, Ref. [7] has pointed out that the outer boundary of the
representative volume element consists of a solid outer boundary and a fluid outer boundary,
and therefore, carcful consideration must be made in defining the kinematical and kinetical
quantitics. In this work, the anisotropic thermomechanical constitutive theory for a fluid-
filed porous material with a solid/fluid outer boundary is constructed along the same lines
as in the author’s previous work.

The following relations were shown to hold among the volume average strains defined
for a sample with a broken outer boundary in Ref. [7]

e = (1-d)ef;+ pefl! (H

e = e +er", el = glel" —ep) ()
e = pel,+ (1 - p)ef}? 3)

el =efi+e, eff? = (1—-¢) (el —el) )
(1= @)ei " + e} = 0. (5)

The superscripts (1), (2). s, f, P(1) and P(2), respectively, indicate the porous solid material,
the porous fluid material, the solid matrix, the fluid without pores, the pore of the porous
solid material and the pore of the porous fluid material, and ¢ is the volumetric porosity
of the porous solid material. The total strain components e;" in eqns (2) and €]/ in eqns
(4). respectively, measure the differential straining of the pore space of the porous solid
material and the solid matrix, and that of the porous fluid material and the fluid, respec-
tively; and they are related by eqn (5).

Similarly, under the assumption of a stationary solid. non-zcro components of the
volume average strain rates were obtained as follows :

dP = df, = d7f, ()

The volume average stresses for a sample with solid/fluid outer boundary in Ref. [7]
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are summarized in egns (7)-(13) where the superscripts have the same meanings as those
in the kinematical quantities and ¢,; are the components of the volume average stress of this
representative volume element

th = (1= )+ ey ™
1) = oty ®)

3 = ot + (1 —dus 9)
5 = (=) (10)
=00 +dp (1n

t, = (1 =)+ otf; 12
S5+ (1=)f = 0. (13)

The stress tensor of the porous solid material and that of the porous fluid material are
shown to have a symmetric and a skew-symmetric part. represented by ( ) and [ ], respec-
tively, in eqns (7)-(10). The skew-symmetric stress tensor of the porous solid material is
equal in magnitude and opposite in sign to that of the porous fluid material, as in egns (8),
(10) and (13). The skew-symmetric part of the stress tensor of the porous solid material
was shown to be related to the interaction moment per unit representative volume element
in Rel. {7].

2. CONSTITUTIVE THEORY

The representative volume element is subject to a uniform temperature increase 0, a
pointwise stress distribution £,(x) on the solid outer boundary B and the fluid outer
boundary By,. Within the linear range, the volume average kinetical and kinematical quan-
tities may be related by their local response. Thus, we may write down the constitutive
equations for £, and 1], as follows:

;= Miuey— M B0 (149
Pi= —K'%, +32'K'0 (15)
1+ Pdyy = Aldy,, 8+ 2u"dj; (16)

where M}, and B}, and K® and 2, are the elastic moduli and the thermal expansion
coefficient of the solid, and the bulk modulus and the thermal expansion of the fluid,
respectively.

In an attempt to relate other kinetical and kinematical quantitics, we separate the total
loading on the solid matrix into loading conditions (17) and (18), and that on the fluid into
loading conditions (19) and (20), respectively

4 = t,(x) on B,
1, = —Pm;, on B, {n

a constant temperature increase ¢
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=0 on B,
18
t,‘ = I,(x)+an, on B,' ( )
',‘ = —P[",' on B{o
I,‘= —P"(—n,-) on B“ (19)
a constant temperature increase
i = ,(x)+ P, on By,
(20)

t; = t;(x)+ Pe(—n) on B;

where P; is the volume average hydrostatic fluid pressure and a constant. The unit normal
vector components on the inner boundary B; are positive in the outward direction on the
solid inner boundary.

The purely mechanical constitutive theory for a fluid-filled porous material such as
that of Biot{4-6] and that given in Refs [1-3, 7] were constructed under the assumption
that the pointwise stress distribution on the pore boundary of the porous solid material
may be approximated by the volume average hydrostatic fluid pressure P; when the de-
formations of the porous solid material werc considered. Employing the same assumptions,
we assume that loading conditions (18) and (20) cause zero volume average strains.
Then ceqns (7)-(13) lead to cqns (21)-(25) in addition to eqns (7), (8) and (13). In
eqn (21), the total volume average stress is decomposed into the part related to the
deformation ¢; and that related to the fluid flow ¢

ty = 40 = (1= )+ ot @2n
;= (1=P);,— PP S, (22)

6, =1+ (23)

(" = —¢pPd,+(1 -2 (24)
(= 12" = $(t,+ P 6,). (25)

The loading, eqns (17), may be decomposed into loadings (26) and (27)

a constant temperature increase

= t(xX)—1;n, on B,
, 27)
t;,= —t n;—Pm, on B,

Under loading condition (26), the stress and strain states in the solid matrix of the porous
solid material are uniform and the total strain of a porous solid material is e;. From eqns
(2). loading condition (27) will cause a total strain of a porous solid material ¢;;". In the
purely mechanical case[7], loading condition (27) is shown to lead to the constitutive
equation, eqn (28), by the methods of superposition of loadings, where the components of
the elastic compliance of the porous solid material are denoted by C,
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":/m n‘,(kll)(‘kl'*‘Pr Our) (28)
l
Ciwl = Cyu— I’:E‘C}/k/- (29)

We obtain the alternative constitutive equations, eqns (30) and (31). by rewriting eqns
(14). (15) and (28) with the use of eqns (22), (2), (4) and (5)

A[Ukl[l(()km(sln + 6kn01m) - (l - ¢)CklrsMrsmn]e‘ o
+ ( 1 é) I\f“(fsrkfckirr D — ( - ¢) (3arKf“’IuUC:(mn uklcaimui"[:mrs B:x)g (30)

P( = ¢)~ Kfcdmmx}l,"[ukie(k}) -Kf[l - ‘(-1:—?-)—: Krcfmnii]eirz)
¢ ¢
(1 —¢)? 1—¢)°
+ Kf[ ( ¢ ¢) {Kfcfum;;+31r‘ ( ¢¢) C:‘nmuM:;kinl]e (31)
where
My =M+ —PMyu+ ;d))' K304
(32)

C?{kIM;:Ir.t = 5(‘5”5}.: + 5(.«61':-)-

When the fluid is incompressible, we have eqn (33) instcad of egn (15), and obtain the
corresponding alternative constitutive cquations, eqns (34) and (35)

":';rm = Jat 0 (33)

(b) ()r' qqnl A’ :mnn] A

Ii‘/ = A[ :,le:.lr.i[il‘/{ :‘!"I':' + C 3 "
([) A’[,,/,tcklrr (’) b
Y- o, oM,

A, af
X [M :xmn B:"Il (Chqnl M :mm: B:nn '#'31'52"‘5 ) U:l (34)

C:uu ( l - ¢)
Crmm A'[: ikt ﬁ 2 (C:’, i A”: kIB;I 3“ (p )
Prm (“’-~ e+ i 0
‘ Ch U T (IZg)CE, Chorr — ) Chupy
(35)
where
M i =M :;(Axf} +{(1—)M
(36)

C:;kIA[kIn! = 2(6#‘)” + (5“(5/,).

In the purely mechanical case[7], the constitutive equations for a sample with solid/fluid
outer boundary are shown to take the same form as those for a sample with closed boundary,
while the definitions of volume average kinetical and kinematical quantities are different.
This is true when we include the temperature effect in the formulations. Therefore, when
both the solid material and the pore structure are isotropic, the constitutive equations,
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egqns (30) and (31) and (34) and (35) reduce to those in Ref. [3], where the isotropic
thermomechanical constitutive equations for a sample with a closed outer boundary are
recorded.

As in the purely mechanical case[7]. the constitutive equation for the flow of the porous
fluid material is given by

i+ P, = Ad20,+ 2u'dD. 37

(1)

The constitutive equations for the interaction related kinetical quantities such as ¢;;; may

not be obtained by the volume averaging methods.

3. THERMAL EFFECTIVE STRESS LAWS

In eqn (28). it is shown that the strain components of a porous solid material due to
differential straining of the pore space and the solid matrix is proportional to Terzaghi’s
effective stress. Equations (1)—(5). (14). (15), (22). (28) and (29) lead to the following
thermal effective stress laws :

":i” = ijklrl’:l (38)
eV = Clulti} (39
) -4 . .
“:Jr:u = - —_(i;“ Cm(nll;t/{ {’kl} } (40)
Am = pepCrlltial] 41
where
rl/(l = I;I + (‘)-kl - lexln (":wmm) Pf + Mkln B:wo (42)
i} = i+ (O — My Cromm) P+ Mg, B0 (43)
’ . ¢ (p -
{ {’/&l y = ’LI + <ol¢/ + A[klrlr) 31\"(] b) P l—":fz A/lk;rlr)ar() (44)
l
[[1“]] B l“ - {‘)“ * ‘A’“'""'< d C;;nn)} Pl'+ .I‘A/’ll:lmm(B:r - 31f)0 (45)
I (l) l Al
C:;LI (b Cl;kl { _;'(ﬁ Cl/kl (46)

Amin cqn (41) indicates the fluid mass increase per unit volume of the porous solid matcrial
and may be expressed as

Am = pf‘b(":n‘r:: - ('IIII:I (47)
where p¢is the fluid mass density.

Also by setting Am = 0 in eqn (41), we may obtain the undrained response of the total
volumetric strain for a hydrostatic confining stress state (;; = — P¢d,; as follows:

P—d0 = ~K,e\" (48)
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where

|
A= {ﬁcuuMﬂm (F - Cf.,.,,,) - 3C},u}

1
X [{3 + %M:”” (F - me)} B:-;, + A(!fn:zr(clluu - C:mu ] (49)

In the absence of a temperature increase, the effective stress laws for the purely mechanical
case are recovered{l].
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